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ABSTRACT
While traditionally a labour intensive task, the testing of game con-

tent is progressively becoming more automated. Among the many

directions in which this automation is taking shape, automatic play-

testing is one of the most promising thanks also to advancements

of many supervised and reinforcement learning (RL) algorithms.

However these type of algorithms, while extremely powerful, often

suffer in production environments due to issues with reliability and

transparency in their training and usage.

In this research work we are investigating and evaluating strate-

gies to apply the popular RL method Proximal Policy Optimization

(PPO) in a casual mobile puzzle game with a specific focus on im-

proving its reliability in training and generalization during game

playing.

We have implemented and tested a number of different strategies

against a real-world mobile puzzle game (Lily’s Garden from Tactile

Games). We isolated the conditions that lead to a failure in either

training or generalization during testing and we identified a few

strategies to ensure a more stable behaviour of the algorithm in

this game genre.
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• Computing methodologies→ Reinforcement learning; Sto-
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learning settings; • Human-centered computing → Heuristic

evaluations; User models.

KEYWORDS
reinforcement learning, puzzle games, mobile games, playtesting,

AI, PPO, production

ACM Reference Format:
Jeppe Theiss Kristensen and Paolo Burelli. 2020. Strategies for Using Proxi-

mal Policy Optimization in Mobile Puzzle Games. In Malta ’20: 15th Confer-
ence on the Foundations of Digital Games, September 15–18, 2020, Bugibba,
Malta. ACM, New York, NY, USA, 10 pages.

1 INTRODUCTION
Human game testing is an expensive and slow process. It usually

requires the full attention of the testers, and there are limitations
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Figure 1: Level 11 from Lily’s Garden. The left hand side
showsnumber ofmoves left to finish the level, and the board
pieces below indicate which and howmany pieces to collect
before completing the level. Collecting the objectives is done
by clearing them off the board, which can be done by click-
ing on two or more basic pieces of the same color, or using
power pieces that clear an entire row/area. Power pieces can
be created by matching 5 or more basic pieces.

on how fast humans can operate. Game developers are therefore

increasingly starting to use automated play testing. However, devel-

oping and implementing such methods in practice has its problems

– the methods tend to require a very specific setup for one game,

and trying to adapt it to other environments may sometimes break

the algorithm and render it useless. In this paper we therefore set

out to explore both novel and common strategies for ensuring a

stable implementation of a reinforcement learning (RL) play-testing

agent in a mobile puzzle game in a production setting.

A popular choice for creating play testing tools is reinforcement

learning, and research in this field is moving fast. Novel algorithms

and updates to current state-of-the-art methods are constantly

being introduced in the latest publications, showing better perfor-

mance on typical frameworks such as the Arcade Learning Environ-

ment [3]. However, contrary to these kind of one-shot evaluations,

adapting these methods in a production environment in a company

requires additional considerations – such as ease-of-use and long-

term reliability. Unlike these benchmark games, production games

are updated frequently, and it can not be expected to be possible

to draw on expert knowledge at any time in case something goes

wrong. Until more focus has been put on strategies on how to use

these methods, adoption of these methods in the industry will be

slow at best.

In this researchworkwe focus on the challenges of implementing

the popular RL method Proximal Policy Optimization (PPO) [29],
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a widely used algorithm available in various RL libraries (OpenAI

Baselines/stable-baselines [6, 14], TF-Agents [30], Unity ML-Agents

[17]), in a mobile puzzle game called Lily’s Garden by Tactile Games

(Fig. 1). While other RL methods may also work in this environ-

ment, we choose to only focus on PPO since it is one of the two

main algorithms implemented in Unity ML-Agents and thus widely

accessible to game developers that use Unity.

Our contribution is two-fold:

• We explore different setups for training an agent in a mobile

puzzle game and determine a set of hyperparameters and

setups that enable the agent to some extend play both seen

and unseen levels competently.

• We highlight that the impact of some PPO variations are not

fully understood and can easily lead to unexpected learning

behaviours. We then suggest strategies for avoiding such

behaviours and ensure a more stable training.

This paper is structured as follows: First we introduce the game

environment that we will use for testing. Next we present the basics

of the PPO algorithm and discuss the specific implementation we

use. This is followed by the experiments section where we present

the various setups we tested and highlight the main difficulties

and problems encountered during training of the agent. Lastly we

discuss which methods and strategies that are feasible to employ

in a production setting and identify areas that need improvement.

2 RELATEDWORK
When it comes to creating agents for playing games, reinforcement

learning (RL) and deep learning methods have started to become a

staple and have been used to play a large variety of games, ranging

from arcade games to first-person shooter games [18]. Each genre

has its own challenges, and some approaches work better than

others in different settings. It is therefore relevant to consider which

approaches that have been used for play-testing in similar game

genres.

In Atari games, some of the state-of-the-art approaches using

pixel data or memory-features as input are deep Q-learning (DQN)

[24, 25] and variations thereof (such as Rainbow [13]), and actor-

critic approaches like PPO [29] and soft actor-critic [10] in [4].

The MuZero algorithm introduced by Schrittwieser et al. [28]

uses a combination of tree-search planning and a learned model

of the environment and is capable of playing Go, Chess, Shogi and

the Atari games. However, how to deal with stochastic transitions

was not examined.

As for approaches used specifically on puzzle games, other ap-

proaches have also been directly applied. Gudmundsson et al. [9]

treat the task as a classification problem and train a convolutional

neural network on player data. Their method beats state-of-the-art

Monte-Carlo Tree Search algorithms in terms of difficulty predic-

tion and training time and has been used actively for a year by the

time of publication. However, this method requires play-through

data which may not always be available. Mugrai et al. [26] use

a MCTS method with an evolutionary strategy where the fitness

function is used to mimic specialised player personas/strategies

with different goals, such as maximising score or minimising moves

used. This aspect of creating human-like agents is indeed important

if they are to be used as a play-testing tool, which is also highlighted

by Zhao et al. [36] where the agents are evaluated by considering

both skill and style. A comparison of three popular methods (DQN,

PPO and A3C) in a custom match-3 game is done by Kamaldinov et

al. [20] which shows that the A3C method achieves the highest ac-

cumulative reward while the PPO and DQNmethods performworse

than random. They use a custom match-3 environment, though,

so it is not clear if these results reflect real-world results in puz-

zle games. An example of training an agent using actual games

levels can be seen in the Unity blogpost [33], where an agent for

playing Snoopy Pop using ML-Agents in [33] is attempted using a

actor-critic method (SAC, [10]) and imitation learning (GAIL, [15]).

Although a slightly different genre, it shows that the training can

be sped up using sample efficient methods and a player to guide

the agent initially. However, a similar approach is not efficient in

games like Lily’s Garden since in those cases it is not necessary

to simulate physics. Furthermore, there are more than 1500 levels

available so deciding which levels to train on or alternatively have

a player play through all of them is not scalable.

When it comes to using such automated systems in a production

setting, reliability and accessibility of the algorithm are critical

components. The less interference required, the better, and when

something goes wrong, identifying the points of failure easily is

important so it can be fixed quickly and not waste resources. RL

systems, especially PPO approaches, tend to be the antithesis of

these requirements: they tend to be brittle [11], and the stability

tends to be implementation-dependant [16]. It is therefore impor-

tant to consider not just the algorithms but also the strategies of

how a play-testing tool should be developed.

Such a tool also needs to be able to generalise to new levels, and

one problem that appears in many RL papers is overfitting to an

environment [35]. Ways to diagnose and improve the generalisation

in deep RL systems have been examined is various works [27, 35].

Farebrother et al. [7] find that dropout and ℓ2 regularisation with a

DQN method improve generalisation. This is also supported by the

findings by Cobbe et al. [5] where data augmentation, batch normal-

isation and stochasticity were also found to improve generalisation

in an implementation of PPO. Adding entropy regularisation also

helps find smoother solutions but is very environment dependent

[1]. Variations in the levels by using procedural content generation

methods can also improve generalisation and help learn more diffi-

cult levels [19]. Avoiding undesirable and dangerous actions may

also help the agent learn more efficiently because of better and safer

exploration strategies [34]. Having the system learn which actions

to eliminate has been the focus in some recent works [2, 31, 34].

In addition to learning action blocking, Kenton et al. [21] also use

an ensemble model in both a DQN and PPO setup. While the DQN

method showed improvements, the PPO experiments showed little

improvement compared to the baseline.

3 ENVIRONMENT
In this paper we focus on one game, Lily’s Garden

1
. It is a free to

play casual puzzle mobile game where you progress through the

main story by completing levels. The main gameplay is matching

1
https://play.google.com/store/apps/details?id=dk.tactile.lilysgarden, https:

//apps.apple.com/us/app/lilys-garden-design-relax/id1437783446

https://play.google.com/store/apps/details?id=dk.tactile.lilysgarden
https://apps.apple.com/us/app/lilys-garden-design-relax/id1437783446
https://apps.apple.com/us/app/lilys-garden-design-relax/id1437783446
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isCell color1 color2 color3

color4 color5 color6 clickableTrue

clickableFalse isCollectgoal basicPiece bomb

magic rocketHorizontal rocketVertical actionmask

Figure 2: Example of how an in-game level looks like and how the game board is represented using different channels corre-
sponding to certain board piece attributes. Note that the last channel, the actionmask, is only included in certain experiments.

similar colored pieces and thereby collecting objectives (collect-

goals), which must be done before running out of moves. The game

board has a maximum size of 13 by 9, and in each position, board

pieces with various attributes may be placed. The basic pieces can

be destroyed/collected if two or more of the same color are next

to each other and will create power pieces if 5 or more are next to

each other. The power pieces can be clicked at any time and destroy

everything in for example a line or circle around the position. Lastly

there are unclickable board pieces, or blockers, that can be removed

by matching basic pieces next to it or sometimes only by using a

power piece. An example of a level is shown in Fig. 1.

We set up an OpenAI gym environment that connects to head-

less version of the game (no graphical interface) which, for speed

purposes, allows us to play through levels without rendering any

graphics. We define a rich reward function where the reward is

calculated at each step as: r = c
collection

n + c
completion

− 0.1, where

c
collection

= 0.05, n is the number of collected collectgoals and

c
completion

= 1 if all collectgoals have been collected. The negative

term, −0.1, is added to encourage the agent finishing the level faster

as to not get a large negative accumulated reward. Given that a typ-

ical level has around 50 collectables and requires up to 25 moves to

complete, the expected final reward is R ≈ 50 · 0.05− 25 · 0.1+ 1 = 1

(not considering discount).

Since each board piece may be of the same type (e.g. basic or

blocker) but different attributes (e.g. color or gravity), one-hot en-

coding each board piece by the unique combination of attributes

may lead to a very large and sparse representation, as seen in [9].

Instead we choose to represent the observation space by using lay-

ers that correspond to the attributes of all the board pieces in a

given position (see Fig. 2). Specifically, we represent the following

attributes with a layer giving a total of 15 channels:

• isCell: used to define shape of game board

• color: one-hot encoding of 6 unique colors

• isCollectgoal: if board piece is a collectgoal

• isClickable[True/False]: one layer for clickable, another

for non-clickable since a non-clickable piece may be on top

of another

• id: one-hot encoding of basicPiece, rocketHorizontal,

rocketVertical, bomb and magic

This approach also has an advantage when it comes to generaliz-

ability for future versions because the observation space will not

depend on graphics updates and new types of board pieces are typ-

ically made up of a combination of existing attributes. The action

space consists of 9 × 13 = 117 discrete actions, corresponding to

each square of the game board.

4 METHODS
The typical reinforcement learning problem consists of an agent

that interacts with an environment and receives a reward depending

on the action. This loop may then continue indefinitely or until the

episode ends. The main purpose of the algorithm is then to learn a

behaviour that maximises the accumulated reward [32].

In the original form, PPO refers to a family of policy gradient

methods that optimize a (clipped) surrogate objective function using

multiple minibatch updates per data sample. However, the exact im-

plementations in various libraries may be slightly different because

of other additions such as value scaling or batch normalisation [16].

Common for them all is the suggested function to optimise, which

is the sum of several loss functions and is given by

LCLIP+V F+S (θ )t = ˆEt

[
LCLIP (θ ) − c1L

V F
t (θ ) + c2S[πθ ](θ )

]
, (1)

where LCLIP (θ ) is the clipped surrogate objective function, LV F
t (θ )

is the value function squared-error loss, S is an entropy bonus and

c1 and c2 are coefficients. The LCLIP (θ ) term ensures that the policy

updates will not be too large, and the LV F
t (θ ) term is to ensure that

the loss from both policy and value functions of the neural networks

are accounted for. The S entropy term encourages a more random

policy (i.e. more exploration) so a larger entropy coefficient c2 will
encourage more exploration.

4.1 Implementation
Since we want to investigate strategies for implementing PPO in a

production environment, we choose to go with a widely used code
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library. Some of the notable RL libraries are OpenAI Baselines
2
and

Unity ML-Agents
3
. For the following experiments we choose to use

stable-baselines, which is a fork from OpenAI Baselines but follows

the same algorithmic implementation of PPO.

We test out three different strategies which will be described in

this section. These strategies are:

• Color shuffling (CS)

• Resetting

• Action mask

Color shuffling refers to swapping the color channels in the

observations randomly. While color shuffling is done in the post-

training evaluation for all models to simulate how levels are de-

signed, we want to test how effective it is to also include this strat-

egy during training. It should also help prevent overfitting – even

though it is random which board pieces that drop down and replace

cleared pieces, the initial setup are usually predetermined (see Fig.

4) which may lead to strong overfitting.

Resetting the environment commonly happens at the end of

episodic environments, which in this case could be when the level

is completed or failed. However, the level move limit is subject to

change because of design considerations, and we already add a

penalty at each step to encourage it finishing faster. Imposing a

move limit does therefore not make much sense. What we do try

with the reset strategy, though, is imposing a total step limit, which

includes both valid and invalid moves. The reasoning behind this

strategy, similar what is given in [23] using restarts in Angry Birds,

is that the agent is prevented from exploring useless states that it

will not learn anything from.

Before deciding what the maximum episode length could be,

two things should be considered. One is how the typical PPO im-

plementation samples observations. In our case, we sample 256

observations before training on these minibatches. This means that

if we reset after 256 total steps, we may end up with a full minibatch

of bad training samples, which is undesirable. Secondly the typical

steps required to pass a level is generally around 50. Levels that

require more steps are rare since it would be very frustrating for

players to almost finish a level but ultimately fail after, say, 100

steps rather than 50. We therefore choose to reset after 100 steps

which should ensure at least some good observations and still allow

the agent to complete a level.

Using an action mask during training is the last strategy we

explore. While we give a penalty for selecting an invalid action,

preventing the agents from selecting certain catastrophic or invalid

actions may lead to more efficient learning. The question is how this

limitation should be implemented. We use two different approaches

for creating action masks in the following experiments – a hard

and a soft action mask.

With the hard action mask, the invalid actions are completely

masked when sampling from the policy distribution. In practice,

this is done by adding the mask to the logits of policy distribution,

where valid actions have a value of 0 and invalid action a value of

−∞. This is slightly different than in the ML-Agents library where

a small probability ϵ is added to the action probabilities which

prevents ∞ values but also allow invalid actions to be taken, albeit

2
https://github.com/openai/baselines

3
https://github.com/Unity-Technologies/ml-agents

with a very low probability. The way sampling is done in the stable-

baselines library is by using a Gumbel-max trick.
4
Specifically, noise

following a Gumbel distribution (computed by taking the negative

logarithm twice of uniformly distributed noise) is added to the logits

which ensures the sampling will follow the underlying probabilities

of the actions.

The soft action mask is a kind of forward model of the environ-

ment. Specifically we add the action mask to the observation space

as an additional channel, as illustrated in the last panel in Fig. 2.

The reason for calling this a soft action mask is because it does not

directly prevent invalid actions from being taken although it might

significantly reduce the probability. The soft action mask model is

denoted with V2.

Since the game simulator does not provide a method for getting

the action mask, we define it ourselves. It follows the basic rules

that an action is valid if at least two basicPieces are adjacent and

of the same color, or if there is a power piece in the cell. While this

is not true for later levels, it is sufficient for the first 11 levels that

we test on.

Lastly, we also want to evaluate if it makes a difference to con-

tinue training after the learning curves have plateaued since shorter

training times allow for quicker iterations and thus easier testing in

a production environment. These long-trained models are denoted

in the post-training evaluation figures with (late).

5 EXPERIMENTS
We carried out a number of experiments to test the performance of

the PPO algorithm in our environment. We used the PPO2 imple-

mentation from the Python RL library stable-baselines [14] and a

custom CNN policy (Fig. 3).

Each of the experiments are evaluated similarly to [5] where

the trained agent is tested on unseen levels in order to evaluate its

ability to generalize. This is done by training on 5 chosen levels (1,

3, 5, 7 and 9) selected randomly and uniformly during training and

validated using an additional 6 levels (2, 4, 6, 8, 10 and 11). With the

exception of level 11, these levels include two unique blockers, and

4
https://github.com/hill-a/stable-baselines/blob/a57c80e0636582995d602309d2ea5547c0d58e61/

stable_baselines/common/distributions.py#L323

Table 1: Overview of models and used entropy coefficient
(EC) as well as which training step checkpoint used for post-
training evaluation. The section in which the results of said
models are also shown. CS: color shuffle.

Model EC Step (×106) Section

Baseline 0 0.35 6.1

Baseline 0.001 0.20 6

Baseline 0.01 11 6.1

CS 0.001 0.20 6.1

CS 0.01 14 6.1

CS+reset 0.01 0.35 6.2

CS+reset+mask 0.01 6.5 6.3

CS+reset+maskV2 0.01 4.0 6.3

CS+reset (late) 0.01 14 6.2

CS+reset+maskV2 (late) 0.01 14 6.3

https://github.com/openai/baselines
https://github.com/Unity-Technologies/ml-agents
https://github.com/hill-a/stable-baselines/blob/a57c80e0636582995d602309d2ea5547c0d58e61/stable_baselines/common/distributions.py#L323
https://github.com/hill-a/stable-baselines/blob/a57c80e0636582995d602309d2ea5547c0d58e61/stable_baselines/common/distributions.py#L323
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Figure 3: The network architecture of the agent.

Figure 4: Levels used for the experiment. Board pieces with
question marks are assigned a random color on level start,
while every other board piece is hardcoded.

splitting the levels accordingly ensures both that the tutorial levels

and trained on and both the training and test sets will include at

least one level containing any of the blockers. Level 11 has a third

unique blocker so we include that level in the evaluation to see

how the agent performs with completely unseen mechanics. An

overview of the levels is shown in Fig. 4.

5.1 Evaluation Metrics
During training we consider the accumulated reward/learning

curve as the evaluation statistic. For the post-training evaluation

we do not want to only estimate if the agent can finish the level

within the actual in-game max moves but also how competent it is

compared to a random agent. We therefore allow up to 2000 total

steps and do not use an action mask. We also shuffle the colors

during evaluation for all models in order to simulate actual in-use

performance, since the different colors of the board pieces only

affect the aesthetics of the game and are used interchangeably.

We will consider two post-training evaluation metrics:

Competence is the reciprocal average index (starting with 1)

of the first valid action after sampling actions using the action

probabilities without replacement. Taking the reciprocal value cor-

responds to estimating the average valid step percentage and can

be thought of as a proxy for how well the agent understand the

basic match-2 mechanic of the game.

Level completion percentage is calculated by imposing the level

move limit on the agent.We also include actual player data. It should

be noted that the player completion percentage is estimated by

taking the number of level completions over total number of level

attempts. However, the level attempts include successes, failures

and abandoning the game, where the latter may happen if the game

for example crashes, other technical failures or simply just giving

up on a level. Abandoning the game typically happens less than 5%

of the time, though, so this effect should be minor.

5.2 Model Setup
We did a preliminary analysis training various models with dif-

ferent hyperparameters to find a stable configuration. While we

also experimented with reward shaping and state representations,

the key changes required to get the PPO algorithm to work with

Lily’s Garden was changing the minibatch size, number of steps per

update and number of actors. We found that setting nminibatches

to 64 (default: 4), n_steps to 256 (default: 128) and the number of

parallel actors is set to 8 gave a good balance between speed and

stability of the algorithm. This is not unexpected as these changes

from default ensure a smoother gradient and faster and more stable

training [12] and thus more stable training.

We use a custom neural network setup as shown in Fig. 3. It uses

three 2x2 convolutions with filter size 64 and leaky relu activations,

which are fed into two fully connected 64 layer for the actor and

critic heads respectively.

The above hyperparameters are kept the same throughout the

experiments except for the entropy coefficient, which will be dis-

cussed further in Section 6 and 6.1. That setup will serve as a base-

line model where no special strategies for training are used. For

the other experiments, we use the three aforementioned strategies

in Section 4.1.

6 RESULTS
The learning curves for every model can be seen in Fig. 5, the valid

move percentages in Fig. 6 and the completion rate in Fig. 7. Table 1

shows at which step each model was evaluated as well as in which

of the following sections they are discussed further.

In this section, we only consider the baseline model with an

entropy coefficient (EC) of 0.001. The other two baseline models

are discussed in the next section.

Looking at the learning curve of the Baseline EC: 0.001 model in

Fig. 5, it can be seen that the agent quickly learns as reflected in

the increase in episode rewards. However, after 400.000 steps, the

episode reward sharply decreases and completely breaks the train-

ing. The same behaviour was also observed in other experiments

during the initial analysis. This happens when the action entropy

becomes sufficiently low which indicates is that the agent ends up

picking the same bad action and fills up the training samples with

bad observations. The problem is further compounded by the fact

that invalid actions do not change the state of the game and we

do not do anything to prevent the algorithm from selecting invalid
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Figure 5: Learning curves for the tested model. The left figure shows a zoomed in version on the first 1 million steps. CS refers
to models trained with color shuffling.
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actions, leading to identical training data samples and thus broken

learning.

On Fig. 6 and 7 it can be seen that while the agent generally

picks valid actions and completes the levels more often than the

random agent, it does not reach human-like performance on both

seen and unseen levels after level 2.

6.1 Generalisation
The observation that the agent does not reach human level per-

formance and sometimes also get stuck on an invalid move may

indicate that the agent does not explore sufficiently. One way to in-

crease exploration with a PPO algorithm is to increase the entropy

coefficient which adds an entropy bonus to the loss function (c2 in
Eq. (1)). Three different configurations were tested: 0.0, 0.001 and

0.01, where 0.001 is the default value.

Generally the learning curves are very similar but the higher the

entropy coefficient is, the longer the agent can be trained for and

the less likely it is to encounter catastrophic learning behaviours.

Adding color shuffling should also help the agents generalise

because it adds randomness. Indeed, the completion percentage

for the CS, EC:0.01 model on level 3 and 4 is better than any of

the baseline models and comparable on the other levels. While it

should be noted that the model had been training for longer, this

was made possible because of the higher entropy coeifficient and

more environment stochasticity. Color shuffling therefore seems to

be a viable strategy in addition to a high entropy coefficient.

6.2 Max Episode Length
Using strategies that add randomness and increase exploration are

not enough to prevent the agent from sampling the same move

over and over again as evidenced by the previous experiments. We

therefore try the strategy of resetting the environment to break the

loop if a bad learning behaviour happens.

It should be noted that it is difficult to compare the learning

curves of agents trained with reset and those without, since reset-

ting ensures that it is not possible to accumulate large negative

rewards from choosing the same invalid action over and over again.

However, the learning curves are still useful for verifying that the

agent is improving and not encountering catastrophic learning

behaviour.

Using the reset strategy has a large positive impact on the learn-

ing. None of the agents that employ this strategy run into the same

loop of selecting the same action all the time which enables the

agent to train longer and learn more, with the exception of the

CSResetMask model which will be described in the next section.

Resetting the environment after a number of steps is therefore a

good strategy that leads to more stable learning.

6.3 Action Masks
Since none of the other experiments directly prevent invalid ac-

tions to be taken, the agent has to first learn to infer which moves

that are valid. We therefore test two different ways of adding this

information – a hard mask and a soft mask, dubbed V2, as described

in Section 4.1.

Using a hard action mask very quickly leads to high rewards

which makes sense since invalid actions lead to a −0.5 penalty but

are never taken now. However, as far as stability goes, the training

completely fails after around 1.5 million steps, as seen in the sharp

drop in the learning curve on Fig. 5.

Unlike what was seen in many of the previous experiments when

the entropy becomes very low/zero, it now receives undefined

rewards, indicating something with the algorithm itself is failing.

What is happening is that the action probability distribution from

the policy is 100% of an invalid action, and 0 on the rest, but because

of the hard action mask, the final logits distribution is filled with

−∞. Taking the maximum of this vector then leads to unexpected

behaviour. This is supported by the fact that the trained agent is

actually not very competent (even worse than random, Fig. 6) and

thus tend to select invalid actions first.

The picture is completely different when using it as a soft action

mask. Looking at Fig. 5, the CSResetMaskV2 agent is both stable

during training and learns faster compared to the CSReset agent

(i.e. they reach the same learning plateau after 0.5M and 4M steps,

respectively). It also has better completion rate and competency on

both test and training levels than any of the other approaches.

7 DISCUSSION
The most effective strategy for training seems to be resetting the

environment after a number of total steps. Color shuffling together

with an increased entropy coefficient are also strategies that help

the agent learn despite slowing down the training. Shifting towards

more exploration and less exploitation in games like Lily’s Garden

therefore seems to be beneficial.

Some of the strategies did not work very well, though, like using

a hard action mask or training for too long. This gives rise to some

concerns if used in a production environment and will be discussed

below.

7.1 Dealing With Invalid Actions
The main issue encountered throughout the experiments was in-

valid actions, which may be very specific to our environment and

implementation of PPO. For example, in ML-Agents a small prob-

ability ϵ is added to the raw probabilities ensuring that there will

be no −∞ when converting to logits. This avoids the hard action

mask problem, but it can be argued that it is not a hard action mask

anymore. Other ways to deal with sampling the same action over

and over could be to use an epsilon-greedy approach or by sampling

the way we did it in post-training evaluation but this significantly

slows down the training.

While this problem with invalid actions may be a very specific

problem to our environment, it still highlights a possible issue

that may arise in other similar games where some actions do not

progress the game. Additionally, if a hard action mask is being

used, the algorithm runs the risk of masking out every action,

leading to unexpected behaviour. This is an issue since in a number

of research papers on play-testing agents it is not clear how the

action masking is actually being done even though it has a huge

impact on the training of the agent. This adds further complexity

to understanding the algorithms and reflects the thoughts in [16]

that the implementation matters.

One question is whether using the action mask is practical in

the long run since it does require some kind of modelling of the
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Figure 8: Histograms of howmany moves required to finish selected levels for selected agents, including the random agent in
black, that show super-, normal and sub-human performance. The grey shaded area is actual player data and is the distribution
that we want to mimic. A sharp cut-off can be seen in the player data distributions which is aligned with the move limit. The
reason a small tail can be seen in level 10 is because players are able to purchase an additional 5 moves if they fail, but only a
fraction of players choose to do so. The normalisation is therefore also not completely comparable since the agents are allowed
to play past the move limit.

environment. Additionally, while the levels considered in this paper

do not have very complex game mechanics, later levels include me-

chanics that prevent certain actions. While the environment could

be configured to return a proper action, this may prove compu-

tationally and developer-time intensive and therefore not viable

in the long run. However, interestingly enough it was found out

during the evaluation process that the action mask in some very

specific cases allowed invalid actions. Whether that is because a

bug in the game or action mask modelling is not clear, but it was

interesting that this was not a problem when using the soft action

mask. This suggest that using even a imperfect forward model of

the environment still improves learning.

7.2 Usefulness in Production
There are two things to consider before judging if the agent is

actually useful to level designers.

The first question is whether the level designers would be able

to rely on the agent or not. For that to be the case, the more con-

sistent and performant it is, especially on unseen levels, the better.

However, what is observed is that the completion rate is worse on

unseen levels. This limits the usefulness to level designers since

the new levels will obviously not have been encountered before.

One solution for this could be to allow the agent to train on the

unseen levels. To see whether this is feasible in a production setting

requires further testing.

One other thing to take note of is the fact that the completion rate

is low despite picking valid action most of the time. This suggests

that the agents learn how to play the game but not how to play

it optimally. This may be a consequence of the reward function,

though – a relatively big penalty is given for selecting invalid moves

compared to collecting objectives. The first thing the agents learn

is therefore how to not take an invalid action. Learning new things,

such as going after objectives, is secondary and would require more

training without overfitting. The best way to achieve this would be

to introduce more levels, which should help with generalising and

making the agent more consistent.

The second thing to consider is that it must play like a human

and not superhuman, so the estimated difficulty matches with how

players perceive it. While the completion percentage used in the

post-training evaluation already reflects this aspect, it does not tell

the whole story. Another way to judge how human-like the agent

behaves is by looking at the distribution of moves required to finish

the level (Fig. 8) and comparing with human data. This kind of

visualisation is also more useful to level designers since it can be

used to determine the move limit. However, none of the models

are consistent in being super/sub-human which must be addressed

first.

7.3 Future Work
When an agent first tries to learn how to play these puzzle games,

it first needs to figure out how to do a valid move. As revealed by

using an action mask, it learns much faster if something guides it

initially. One way could therefore be to use imitation learning to

first teach it how to do the basics. This also has the added benefit

that it may be easier to guide the agent to play more like a human

which would make the tool more useful to level designers. It would

require some time and effort to set this up in practice, though,

both in regards to implementing it in production code but also

the time level designers would have to spend training the agent.

Evaluating which approach is more time-effective should therefore

not only include computation time but also the human resources

required. However, an imitation learning module has been added

to ML-Agents and may provide a good starting point.

The post-training evaluations show that the agents play some

levels well but struggle with others. It therefore seems like a better

strategy to spend more time training on the difficult levels rather

rather than continuing selecting the levels randomly. An idea could

be an automated approach like in [8] where the training examples

that yield the most learning are chosen. This would also open up

for training on more levels which should help generalisation of the

agent on unseen levels. One thing to keep in mind before training

on many new levels and mechanics, though, is that the agent may

be prone to catastrophic forgetting [22] where previously learned

behaviours are completely forgotten.
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8 CONCLUSION
In this research paper we have successfully adapted the popular

RL method PPO to a production grade puzzle game for training

play-testing agents. Crucial to this success, not considering hyper-

parameter tuning, was introducing a reset strategy where the envi-

ronment is reset after a fixed number of steps. This ensured a more

stable training, enabling the models to learn more. Other strategies

also improved other aspects of the training – color shuffling im-

proved generalisability, and introducing an action mask as a partial

forward model of the environment in the observation greatly im-

proved training speed, though the latter may not always be feasible

in other types of games.

When we experimented with a hard action mask that was added

to the logits of the action probabilities, the algorithm completely

broke down. This happened because all the valid actions from the

model were practically 0 while the invalid actions were all 0 because

of the action mask, effectively masking out every action and leading

to unexpected behaviour. Various RL libraries use a similar method

but it should be used with great caution. A better approach would

be to include the action mask in the observations and thus serving

as a partial forward model.
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